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Abstract: The existing methods for monitoring vessels are mainly based on radar and automatic
identification systems. Additional sensors that are used include video cameras. Such systems feature
cameras that capture images and software that analyzes the selected video frames. Methods for
the classification of non-conventional vessels are not widely known. These methods, based on
image samples, can be considered difficult. This paper is intended to show an alternative way to
approach image classification problems; not by classifying the entire input data, but smaller parts.
The described solution is based on splitting the image of a ship into smaller parts and classifying
them into vectors that can be identified as features using a convolutional neural network (CNN). This
idea is a representation of a bag-of-words mechanism, where created feature vectors might be called
words, and by using them a solution can assign images a specific class. As part of the experiment, the
authors performed two tests. In the first, two classes were analyzed and the results obtained show
great potential for application. In the second, the authors used much larger sets of images belonging
to five vessel types. The proposed method indeed improved the results of classic approaches by
5%. The paper shows an alternative approach for the classification of non-conventional vessels to
increase accuracy.

Keywords: bag-of-words mechanism; machine learning; image analysis; ship classification; marine
system; river monitoring system; feature extraction

1. Introduction

Ship classification is an important process in practical applications in different places. In coastal
cities, ships enter from the mouth of a river or moor at ports. This type of activity is quite often reported
and recorded. However, for measurement, statistical, or even analytical purposes, it is often necessary
to record vessels that arrive but do not report anywhere. To this end, the simplest solution is to create a
monitoring system and analyze acquired images. This type of system architecture is based primarily
on three main components: video recording, image processing, and classifying possible water vehicles.

While the solution itself seems simple, each component has its disadvantages, which also affect
the others. First, the video recorder may be a simple camera, but often one needs to take good-quality
photos for easier analysis. The second component is image processing. Image processing should
consider the location of a possible ship on an image, or even perform some extraction of features. It is
particularly important to remove unnecessary areas such as the background, houses, and even water.
The third element is classifying these images, i.e., based on the obtained images, the algorithm should
determine with some probability the type of ship.

In this paper, we considered the third aspect of such a system to model a solution enabling the
most accurate classification of a given type of ship based on a photo entered into the system. In the
analyzed system [1] an important element was the recording of information about passing vessels in
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water bodies. Unfortunately, this task is not easy due to the similarities between ships and the many
factors that can be mistaken for a ship.

2. Related Works

In the last decade, the number of methods for classifying images has increased, and the main
contribution is the description of convolutional neural networks (CNNs). These mathematical structures
can be modeled for specific classification problems, as can be seen in [2]. The classification problem
might also be improved by extracting some important objects. For this purpose, segmentation can be
used [3,4]. In this paper, the authors proposed a convolutional network architecture based on three
dimensions of the incoming image. Moreover, CNN was used for classifying objects from different
points of view, which is very practical using drones [5], or even for sleep stage scoring based on
electroencephalogram (EEG) signals [6]. Moreover, CNN has been used for recognition of vehicle
driving behavior [7]. In addition to classic architectures, there are others, such as U-net, which are
used as segmenting elements and in inverse problems [8]. Many applications of CNN can be found,
primarily in monitoring systems and medicine.

In general, a database for training such structures has the biggest impact on the classifier. A very
common problem is the lack of enough samples, which results in low efficiency or even overfitting.
Data augmentation, i.e., generating new samples based on existing samples using image processing
techniques, is a popular solution [9]. In [10], the authors discuss the effect of augmented data on CNN
based on images from chest radiographs. Similarly, in [11], the authors use augmentation to increase
the dataset by adding some distortions, such as changing the brightness, rotating, or adding some
mirroring effects. Moreover, in recent years learning transfer has been enabled, i.e., the use of trained
network architectures to minimize training time. The main idea was to create architectures and train
them on huge databases. Trained classifiers are those whose coefficients are specialized in searching
for features and classifying, so the learning transfer consists of using the finished model, modifying
only selected layers, and overtraining only selected values to meet the needs of new bases. Not
modifying any of the layers is called freezing. One of the first architectures for that was AlexNet [12].
Another was VGG16, modeled by a group from Oxford who primarily reduced the size of the filter
in a convolution layer [13]. Another popular model is Inception [14], which drastically reduced the
number of architecture parameters.

The ship classification problem depends on using images. Commonly used are synthetic aperture
radar (SAR) images, by which ships can be classified based on their shape [15]. Similar research
was described in [16,17], where superstructure scattering features were analyzed in the process of
classification. Similarly, in [18], the idea of ship classification was solved by analyzing sound signals
and removing the background sound of the sea. Other input data are aerial images that present
a top view of the scenery and the ship. In all of these solutions, CNN was used for faster feature
extraction and classification. An interesting approach was presented in [19], where the authors
described the impact of simulated data on the training process of neural classifiers in the problem of
ship classification. Moreover, in [20], a neural approach for ship type analysis with sea traffic was
presented as an automatic identification system. All these studies used neural classifiers for image
processing and classification.

In this paper, we propose a solution for the classification of different non-conventional ships using
images made from the side and not from the top, like SAR images. This problem is hard, because
images can be created using different light, from a different distance, or even from different sides of the
object. The described solution was based on splitting the image of the ship into smaller parts (using
keypoint algorithms with clustering) and classifying them by CNN into vectors that can be identified
as features. This idea is a representation of a bag-of-words mechanism, where created feature vectors
might be called words, and using these words, a solution can assign them a specific class. The main
contribution of this article is the use of a bag-of-words mechanism to classify non-conventional ships,
which in the future could be used in an innovative system for automatic recognition and identification
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in video surveillance areas. The solution proposed in the paper has not been applied anywhere and is
a new approach to the subject.

3. Bag-Of-Words

Bag-of-words is an abstract model used in the processing of text or graphics. It is the representation
of data described in words, i.e., linguistic values. In the case of two-dimensional images, with a word
we can describe a feature or fragment of an object. The idea of using a bag can help classify processes,
because the input image will be decomposed into smaller fragments and classified according to certain
linguistic values. These values can help in the classification of larger objects. This is especially desirable
when analyzing the same objects that differ in their small features.

The proposed idea consists of extracting small fragments of the image with certain features. All
points are divided against a certain metric into smaller images containing a fragment of the object.
Such images can represent everything, because the object can be on any background; for instance, a
ship can be captured in the port or against a background of trees; in that case, smaller images can even
show some trees. Thus, the use of a classical approach, that is, the creation of a bag-of-words using
an algorithm such as k-nearest neighbors, is not very effective. The reason is the lack of connection
between the features (in smaller parts), because it should be considered that the objects can be on
different scales or turned at a certain angle or even have some noise, such as bad weather or additional
objects. That is why we propose a bag-of-words model based on more complex structures, such as
neural networks.

3.1. Feature Extraction

The main idea of this study was to extract features using one of the classic algorithms for obtaining
keypoints, such as scale-invariant feature transform (SIFT) [21], speeded up robust features (SURF) [22],
features from accelerated segment test (FAST) [23], or binary robust invariant scalable keypoints
(BRISK) [24], and then create samples with found features. It should be noted that if these algorithms
processed the original image, the found points would probably cover the entire image; in the case of a
simple image where a ship is at sea, all points could be placed on this object or water or waves, but
there may be an image with some additional background with many possible points. To remedy this,
in the first step, the image must be processed, which means using graphic filters to minimize elements
such as edges or points. We used only two filters, such as gamma correction and blur.

3.2. Feature Extraction Based on Keypoints

Using the described algorithms, we obtained a set of keypoints, which we can describe as A =
{(x0,y0), (x1,y1), . . . , (xn−1,yn−1)}. To minimize the number of points (because unnecessary elements
of the image can be indicated), all points were checked against their neighbors. If the point had a
neighbor within a certain distance α, it remained in the set. Otherwise, the point was removed, and
the cardinality was reduced by one. The distance between two points pi = (xi, yi) and pj = (xj, yj) was
checked using one of the two classic metrics, Euclidean or river. The best known is the Euclidean,
modeled as

dE =
(
(xi, yi),

(
x j, y j

))
=

√
(yi − xi)

2 +
(
y j − x j

)2
(1)

A river metric is the distance between points but counted relative to a certain straight line between
the points. For both points, a perpendicular projection is made, as a result of which an additional two
points are obtained, (xo, yo) and (xp, yp). The distance in this metric will be calculated as the sum of the
distance of a given point to the straight line, the distance between these two points on the straight line,
and the transition from the straight line to the second point. Formally, it can be stated as

dR
(
(xi, yi),

(
x j, y j

))
= dE((xi, yi), (xo, yo)) + dE

(
(xo, yo),

(
xp, yp

))
+ dE

((
xp, yp

)
,
(
x j, y j

))
(2)
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Depending on the given metric, all points are checked to see if the distance is smaller, and if so,
the point is removed. The next step is to divide the points into subsets Bq, where q is the number of
objects. It is not possible to adjust the value of q without empirically checking and testing the data in
the database. With this value, it is worth using existing algorithms to divide these points (for example,
using the k-nearest neighbors algorithm). However, this value is unknown, so another approach to the
topic should be taken. For this purpose, one of the previously described metrics can be used.

For all points in a given set A, the average distance value is calculated as

ξ(A) =
1

5 · n2

n−1∑
i=0

n−1∑
j=i

dmetric
(
(xi, yi),

(
x j, y j

))
(3)

With the average distance, the points are divided concerning this value. The first subset is created
by adding the first point to it, i.e., (x0, y0) ∈ B0. Then, for each point (xr, yr) ∈ A, we check to see if
the distance between this point and any other in a given subset (x0, y0) ∈ B0 is less than the average
distance of the set, i.e.,

dmetric((xr, yr), (x0, y0)) < ξ(A) (4)

If the above equality is met for a point (xr, yr), it is added to subset B0 and removed from A. In
the case where none of the points is added to a given subset, another subset, B1, is created. Then, the
first point from A is added to subset B1 and removed from A. In this way, the action is repeated to
meet the stop condition, which is the emptiness of the set, A = ∅.

As a result, subsets B are generated, with each representing one feature. For each set, an image
is created whose dimensions will depend on the subset. To find the dimensions, we look for the
maximum and minimum values of both coordinates in a subset that we can mark as xmax, ymax, xmin,
and ymin. Hence the image size will be (xmax–xmin) × (ymax–ymin). Then, the images are saved and each
one represents a part of the image. The left part of Figure 1 shows this process of extracting smaller
parts of the image. Figure 1 shows a graphic visualization of the proposed model.
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Figure 1. Graphic visualization of the proposed model.

4. Classification with Bag-Of-Words

Unfortunately, there was no unambiguous method to assign attributes to specific groups
automatically. Therefore, we suggested creating groups at the initial stage of modeling the solution
with the help of empirical division. In this way, the basic database of features were created, which will
include a later bag-of-words.
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4.1. Convolutional Neural Network

One of the most important branches of artificial intelligence methods is neural networks, which
have been modeled for the needs of graphic image classification. Convolutional neural networks are
models inspired by image processing by the cerebral cortex of cats. It is a mathematical structure built
of three types of layers, where the layers between them are connected by synapses burdened with
a certain weight. The weight is given randomly while creating the structure. Then, in the training
process, the weights are modified to best match the training database.

One of the key layers of the network is the convolutional layer, which takes the image of the input
with dimensions w × h × d, where w and h are the width and height of the image and d is understood
as depth and depends on the model. For color images saved in the red–green–blue (RGB) model, the
depth will be 3 due to the number of components. Formally, each image is saved as a set of matrices,
each of which describes the image values for a given component. The convolutional layer works on a
principle of image filter f of size k × k. This filter is a matrix with k2 coefficient defined randomly and
modified during the training process. This filter is moved over the image and changes the value in
pixel p on image I at position (i, j), which can be defined as

I[i, j] =
1
K

[ k
2 ]∑

t=−[ k
2 ]

[ k
2 ]∑

r=−[ k
2 ]

I[i + t, j + r]· f [t, r] (5)

where matrix f is located over an image and the central point of the matrix is over a pixel at position
(i, j), and K is the sum of all weights of filter f. The main purpose of this layer is feature extraction
and reduction of data redundancy on the image. Applying some filter on the image will change it;
depending on the coefficient of filters, some objects might be deleted or highlighted.

The second type of layer is called pooling, which has only one purpose: to reduce the size of
matrices. Reducing depends on some function g(·), which selects one pixel from each square m × m.
The most commonly used function is max(·) or min(·).

These two layers can be used alternately many times. In the end, there is the last layer, the fully
connected layer, which is understood as a classical neural network. Each pixel from the last layer
(pooling or convolutional) is input as a numerical value. This layer is composed of columns of neurons
connected by synapses, which are burdened with some weight. Each neuron gets a numerical value
that is processed and sent to the next column. This operation can be described as

xt
m = f (

n∑
i=1

xt−1
i · ωi) (6)

where xt is the output from neuron m in layer t, and ωi is a weight on the connection between xm in
layer t and xi in layer t – 1. The number of columns and neurons depends on the modeled architecture.
In the last column, there should be k neurons (when a classification process is described as a k-classes
problem). The final calculation of an image in such a structure gives a probability distribution that
can be normalized by some function like softmax. These values are understood as the probability of
belonging to this class.

Unfortunately, all weights in this model are generated randomly at the beginning. To change
these values, the training algorithm must be used. The main idea is to minimize loss function during
two iterations. One such algorithm commonly used in convolutional networks is adaptive moment
estimation [25]. The modification of weights is based on a basic statistical coefficient like the correlation
of mean m̂ or variation v̂:

m̂t =
mt

1− βt
1

(7)
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v̂t =
vt

1− βt
2

(8)

where mt and vt are the mean and variation values in the tth iteration. The formulas for calculating this
can be presented as

mt = β1mt−1 + (1− β1)gt (9)

vt = β2vt−1 + (1− β2)g2
t (10)

where β1, β2 are distribution values.
Those two statistical coefficients are used in the modification of weight as

θt+1 = θt −
η√

v̂t + ε
m̂t (11)

where η is the learning coefficient and ε , 0, which prevents division by 0.

4.2. Bag-Of-Words

A trained classifier can be used as an element dividing incoming images into selected elements
in a bag. For each image, smaller images representing features are created. Each of these features is
classified using the pretrained convolutional neural network. As a result, the network will return the
probability of belonging for each word in the set (each single output from the network is interpreted as
a word). Based on a certain probability and features, it is possible to assign these attributes to an object.
The selection of features for an object works on the principle of determining conditional affiliation
to another word in the bag. To make it impossible to save the whole object to its characteristics, it is
worth introducing division of the bag into two sets (or even two bags). The first bag will contain only
features and the second full objects. For a better understanding of this idea, let us assume that the
image presents a motorboat. The biggest bag will contain a class of ships, like motorboat, yacht, etc.
The smallest bag (in the biggest one) will describe one ship. For motorboat, these words would be, for
example “a man”, “waves”, and “no sails”.

Each of these objects is defined as a numerical vector consisting of zeros and ones (ones as
belonging to this class). Each item in the vector is assigned to one feature from the bag-of-words, so its
creation consists of using the result returned by the classifier. It should be noted that for many smaller
segments from basic images, there will be many classification results. These results are averaged by all
returned decision from classifiers.

The evaluation of the feature vector to an object occurs by comparing these vectors. The simplest
method is to approximate the values returned by the network to integers and compare them with the
words in a bag. However, there may be a situation where the vector will be different in one position
compared to the patterns. To prevent this, we suggest using the k-nearest neighbors algorithm, which
will allow assigning to a given object. The full display of this process is shown in Figure 1.

The k-nearest neighbors algorithm consists of analyzing and assigning the sample to neighboring
samples [26,27]. Suppose that the value xi has an assigned class µi. In the case of the analyzed problem,
xi will correspond to 1 and values of µi are the appropriate values representing the objects. The
algorithm finds the nearest neighbors (values) x′n ε {x0, x1, . . . , xn−1} for the given value x according to
the following equation:

min(dmetric (xi, x)) = dmetric (x′n, x), i = 0, 1, 2, . . . , n− 1. (12)

5. Experiments

In our experiments, we tested two databases. The first one had two classes, sailing ship and
others, and was used to create the first set of features and find the best combination of algorithms. The
second database contained more classes and the biggest number of samples to show the potential
application of such an approach.
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5.1. Classification for Two Classes of Ships

In these experiments, we tested the proposed solution to find the best combination for our
proposition. For this purpose, the database we used was very small. It contained two classes, sailing
ship and others. A sailing ship should have sails, although they do not always have to be spread. Such
an observation allows the creation of two features describing this object, i.e., masts and sails. In this
way, a vector describing these two classes will be created:{

[1, 1] sailing ship
[0, 0] other

(13)

where individual values are understood as appropriate features, masts and sails. In these tests, a CNN
architecture as described in Table 1 was used.

Table 1. Convolutional neural network (CNN) architecture. ReLU, rectified linear unit.

Type of Layer Shape

Convolutional 5 × 5 (None, 96, 96, 20)
Activation: ReLU function (None, 100, 100, 20)

MaxPooling 2 × 2 (None, 50, 50, 20)
Convolutional 5 × 5 (None, 50, 50, 50)

Activation: ReLU function (None, 50, 50, 50)
MaxPooling 2 × 2 (None, 25, 25, 50)

Flatten (None, 31, 250)
Dense 500 (None, 500)

Activation: ReLU function (None, 500)
Dense 2 (None, 2)

Activation: softmax function (None, 2)

In the experiments, we used a database contained 800 images (600 with sailing ships, and 200
with other ships). In the training process, 75% of the samples selected randomly from each class were
used, and the remaining 25% was used for the validation process, which were 150 and 50 images.

For each sample, one of the keypoint algorithms was used, which allowed us to create a few
smaller segments. We tested the algorithm for each segment, and the results of two selected metrics,
Euclidean and river, are presented in Table 2. In the table, for each algorithm, there are two columns
labeled “Object features” and “Background”, which means that the extracted segment describes an
important feature of a ship or not. Quite a common problem was to find the background, i.e., an
insignificant fragment of the ship, and a large amount of sky or sea. The results shown are averaged
over the entire base. It is easy to see that using the Euclidean metric generates many more features
compared to the river metric. In both cases the ratio of images depicting features of the background
exceeded 50%; however, that is not that big for the classic Euclidean metric.

Table 2. Average number of created objects using a key-search algorithm with the connection with
Euclidean or river metrics. SIFT, scale-invariant feature transform; SURF, speeded up robust features;
FAST, features from accelerated segment test; BRISK, binary robust invariant scalable keypoints.

SIFT SURF FAST BRISK

Object
features Background Object

features Background Object
features Background Object

features Background

Euclidean
metric 5 3 10 4 8 4 9 5

River metric 3 2 4 3 4 4 6 4

In our tests, we used the SIFT, SURF, BRISK, and FAST algorithms to find keypoints. After that,
all found segments were resized to one size and calculated using CNN. The results obtained for each
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image were averaged and classified using the k-nearest neighbors algorithm (in this experiment, k = 2)
and are presented in Tables 3 and 4 (the results in the second column represent classification of the
whole image). Some examples of keypoint clustering are presented in Figure 2.

Table 3. Statistical coefficients for classification measurements using the selected keypoint search
algorithm with Euclidean metric and CNN.

CNN CNN + SIFT CNN + SURF CNN + BRISK CNN + FAST

Accuracy 0.78 0.814261 0.843831 0.832976 0.832347
Sensitivity 0.815476 0.903403 0.931257 0.909825 0.91635
Specificity 0.59375 0.453333 0.486842 0.534031 0.537778
Precision 0.91333 0.869979 0.881098 0.88366 0.874244
Negative predictive value 0.38 0.536842 0.634286 0.60355 0.647059
Miss rate 0.184524 0.096597 0.068743 0.090175 0.08365
Fallout 0.40625 0.546667 0.513158 0.465969 0.462222
False discovery rate 0.08667 0.130021 0.118902 0.11634 0.125756
False omission rate 0.62 0.463158 0.365714 0.39645 0.352941
F1 score 0.861635 0.886376 0.905483 0.896552 0.894802

Table 4. Statistical coefficients for classification measurements using the selected keypoint search
algorithm with river metric and CNN.

CNN CNN + SIFT CNN + SURF CNN + BRISK CNN + FAST

Accuracy 0.78 0.795932 0.825556 0.823859 0.820397
Sensitivity 0.815476 0.901408 0.916123 0.915133 0.923821
Specificity 0.59375 0.487113 0.521875 0.494465 0.516014
Precision 0.91333 0.837285 0.865317 0.867248 0.848889
Negative predictive value 0.38 0.627907 0.649805 0.617512 0.697115
Miss rate 0.184524 0.098592 0.083877 0.084867 0.076179
Fallout 0.40625 0.512887 0.478125 0.505535 0.483986
False discovery rate 0.08667 0.162715 0.134683 0.132752 0.151111
False omission rate 0.62 0.372093 0.350195 0.382488 0.302885
F1 score 0.861635 0.868164 0.889995 0.890547 0.884771
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The highest efficiency was obtained with the Euclidean metric using the SURF algorithm. For this
combination, the results of classification compared to those without using the bag-of-words mechanism
was nearly 6% higher than that with the convolutional network alone. However, it is worth noting that
the significant difference between the results obtained indicates the negative predictive value, whose
value was almost twice as high when using the bag mechanism. This factor determines the probability
of assigning a false sample to the correct class; in this case, not a sailing ship. The situation is similar
to other hybrids, where this value is always higher than 50%. A similar situation occurred with the
F1 score, which is the harmonic average of the precision and recall coefficients. This factor allows
us to evaluate the classification if its components have different values. In each case, the statistical
coefficients indicated a more accurate process taking into account the proposed mechanism.
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For a more detailed analysis, time measurements were also made for the image processing and
training of a given architecture, as shown in Figure 3.
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The presented results are averaged data from 10 tests. In general, using the Euclidean metric
saves approximately 10% more time than using the river metric. The tests showed that the longest
processing time occurred using the FAST algorithm and the shortest with BRISK. As for the SIFT and
SURF algorithms, the time measurement was at a similar level and was classified as in the middle.

5.2. Classification for Five Classes of Ships

Based on the previous results, the best accuracy was achieved with a combination of the SURF
algorithm and CNN. We used this combination for classification of five classes: cargo (2120 images),
military (1167 images), tanker (1217 images), yacht (688 images), and motorboat (512 images). For the
first three classes, images were downloaded from a publicly available dataset from Deep Learning
Hackathon organized by Analytics Vidhya. Each class was divided randomly into two sets in a 75%:25%
(training/validation) ratio, and for the training process the data were split in the same proportion.
Using the training set, the SURF algorithm was used to create smaller parts, and based on the created
sets, these samples were put into features which can be described as the following vector:

[mast, sail, people, color, simplyShape], (14)

where people means that on deck some people can be found, color means that a boat can have different
colors (for a military ship, it is mainly gray), and simplyShape means that the ship can be recognized as
a simple geometric figure, such as a rectangle. These features were chosen according to the database
used and their possible location.
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Using these features, words describing ship type were defined as follows:

[0; 0; 0; 1; 1] cargo
[1; 0; 0; 0; 0] military
[0; 0; 0; 1; 0] tanker
[1; 1; 1; 1; 0] yacht
[0; 0; 1; 1; 1] motorboat

(15)

The training database contained 4278 images, which resulted in almost 26,000 smaller segments.
Data were split into features based on color clustering using the k-means algorithm [28] and corrected
empirically (especially for shape). We trained the classifiers with the architecture described in Table 1,
but in the end there were five because of the five classes of features. The classifier was trained for five
different numbers of iterations, t ∈ {20, 40, . . . , 100}, and the accuracy is presented in Table 5. The best
accuracy was reached using 80 iterations; accuracy did not improve with more iterations.

Table 5. Average classification accuracy and number of iterations in the training process.

Iterations 20 40 60 80 100

Accuracy 29% 35% 56% 61% 61%

The obtained accuracy is not very promising in such a classification problem. The main cause of
this is the selection of features and creating sets for them. In the experiments, the dataset was so big
that whether the sample belonged to the set was determined by the algorithm. Moreover, a feature
such as shape is not the best choice for ships.

Despite these drawbacks, we conducted an additional experiment to check the classification result
for this database in terms of hybrids. We classically trained a CNN to classify full images. Next, we
checked the effectiveness of the validation base. Then we combined the obtained results from this
classification with the proposed solution. Our approach classified into a given class out of the bag, so
we understand the assignment to this class as adding a constant value equal to 0.2 to the probability of
assignment according to the classic classifier. This approach will allow one probability distribution
to be changed by 20%. The results of such action are shown in Table 6. The table shows the exact
numbers of correctly classified images from the validation set and the accuracy.

Table 6. Comparison of classic CNN usage and extended usage with the proposed approach.

Cargo Military Tanker Yacht Motorboat Accuracy

Classic CNN 478 195 234 78 57 0.731228
Classic CNN + proposed approach 479 236 236 105 78 0.795789

These data show that our proposition can be used as an additional component and increase the
classification accuracy by nearly 5.5%. This result is better, but there is a problem with more time
to train nets and classify samples because of much more operation. It is worth noting that values
increased mainly for the military class, yachts, and motorboats. This is due to the good definitions of
features such as the ones we have for military, or people and colors for the other two classes. The main
conclusion is that the most difficult task is to initially declare a bag-of-words describing these features.
This solution can be used in practice, but there are some additional tasks during the modeling of this
solution, such as overseeing the creation of small images representing features and assigning them to
individual groups. Also, the declaration of characteristics involves allocating image segments to these
classes and analyzing them before training the classifier.

We used other CNN architectures, including VGG16, Inception, and AlexNet, and compared the
results with and without our approach, as shown in Figure 4.
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The obtained results show that all tested architectures increased classification accuracy. The
average value for all architectures was around 6%, which was a good result based on small datasets
(neural networks are data-hungry algorithms). However, it was noted that apart from VGG16, where
the increase was close to 3%, the other architectures achieved an increase of 7%. This was a good result,
which could be significant for more extensive classes in the analyzed database.

6. Conclusions

Image classification is a problem for which solutions are being developed all the time. In recent
years, revolutionary neural networks have been developed that have enabled a huge leap forward.
Unfortunately, this solution also has its problems, such as requiring a large number of samples in the
database, or architecture modeling. In this paper, we focused on analyzing images of selected ships.
As part of the research, we proposed a classification mechanism based on sample segments that was
determined based on algorithms searching for keypoints and subsequent classification.

As part of our experiments, we performed two tests. In the first, we analyzed two classes
and the results obtained showed great potential for practical applications. In the second, we used
much larger sets of images of five types of ships. The proposed solution in itself showed many
disadvantages, especially at the stage of determining features and assigning samples to them to train
the classifier. However, we used this solution as an additional element of classification after using
the classic approach, including learning transfer. As a result, we noticed that the average efficiency
increased by approximately 5% in almost all cases compared to the currently used convolutional
network architectures.

An analysis of the database using a feature vector, which can be treated as a bag of words, shows
potential practical application, especially if the features of the objects are well described. In future
research, we plan to focus on how to automatically analyze images to extract features from them, as
well as automatically assign classes as an unsupervised technique.
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