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Abstract: The Territorial Sea Baseline (TSB) allows coastal states to define the maritime boundaries,
such as: contiguous zone, continental shelf, exclusive economic zone and territorial sea. Their
delimitations determine what rights (jurisdiction and sovereignty) a given coastal state is entitled
to. For many years, the problem of delimiting baseline was considered in two aspects: legal (lack of
clear-cut regulations and different interpretations) and measurement (lack of research tools for precise
and reliable depth measurement in ultra-shallow waters). This paper aimed to define the seasonal
variability of the TSB in 2018–2020. The survey was conducted in three representative waterbodies of
the Republic of Poland: open sea, river mouth and exit from a large port, differing between each other
in seabed shape. Baseline measurements were carried out with Unmanned Surface Vehicles (USV),
equipped with Global Navigation Satellite System (GNSS) geodetic receivers and miniature Single
Beam Echo Sounders (SBES). The survey has shown that the smallest seasonal variability of TSB
(1.86–3.00 m) was confirmed for the waterbody located near the Vistula Śmiała River mouth, which
features steep shores. On the other hand, the greatest variability in the baseline (5.73–8.37 m) as
observed in the waterbody adjacent to the public beach in Gdynia. Factors conditioning considerable
changes in TSB determination were: periodically performed land reclamation works in the area and
the fact that the depth of the waterbody increases slowly when moving away from the coastline.

Keywords: Territorial Sea Baseline (TSB); Unmanned Surface Vehicle (USV); Global Navigation
Satellite System (GNSS); Single Beam Echo Sounders (SBES); hydrographic surveys; coastal waters

1. Introduction

According to international law, boundary delimitation means establishing boundaries
between states. For sea areas, a coastal state may draw four types of maritime boundaries:
contiguous zone, continental shelf, exclusive economic zone and territorial sea [1,2]. Due
to the possible occurrence of natural resources at sea areas, determining jurisdiction of
coastal states is currently one of the most important issues in international relations. The
prerequisite is to draw a Territorial Sea Baseline (TSB), without which it is impossible to
determine maritime boundaries of sea areas connected with it [3,4] (Figure 1).
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The baseline can be defined in two ways in the literature. The first is that when the
coastline is regular then the TSB is defined as: “the low-water line along the coast as marked on
large-scale charts officially recognized by the coastal state” [6]. In the latter case, the baseline is
straight, and it can be used: “In localities where the coastline is deeply indented and cut into, or
if there is a fringe of islands along the coast in its immediate vicinity” and “Where because of the
presence of a delta and other natural conditions the coastline is highly unstable” [6]. Thus, this
line is used only when the coastline is varied.

To date, coastal states have considered drawing baselines in two aspects only: legal
and measurement. For example, in Poland, pursuant to the Regulation of 2017 [7], the
current Polish maritime boundary is determined based on the legal acts of 1957–1995. In
such a case, it should be recognized that data defining the drawing of a TSB is out of
date, which is conditioned, first and foremost, by the variability of hydrological conditions
of the Baltic Sea. The second issue pertains to the methodology of performing baseline
measurements. In connection with the fact that the TSB is located in ultra-shallow waters,
featuring depths of below 1 m, classical geodetic methods were used to determine its
course. Among them, the following may be distinguished: tachymetric methods (popular
until 1990) [8], Differential Global Positioning System (DGPS) (positioning accuracy of
1–2 m, p = 0.95), Real Time Kinematic (RTK) systems using the Global Positioning System
(GPS), and direct measurements taken by land surveyors with profiles performed in the sea
water [9,10]. The measurement methods listed above were of low efficiency due to accuracy
of the conducted survey, small area coverage with measurements and the survey duration.

Only recently has the development of measurement techniques taken place, allowing
for the execution of TSB measurements. Among them, the following may be distinguished:
Unmanned Surface Vehicles (USV), which are characterized by high maneuverability
and small sizes [11–18], Global Navigation Satellite System (GNSS) geodetic networks
providing services of both real-time, as well as post-processing [19–23] and miniature
devices for depth measurements [24–28]. Thanks to them, it is possible to carry out
bathymetric measurements in ultra-shallow waters with up to centimeter accuracy [29–31],
as well as in a rapid and reliable manner. Moreover, photogrammetric methods are often
used to analyze coastal zone changes, using unmanned [32–36] and manned aircrafts [37],
as well as analyzing multispectral images of high [38–41] and moderate [42,43] resolution.

The paper features the following structure. Chapter 2 is a description of three repre-
sentative waterbodies of the Republic of Poland, on which TSB measurements are taken.
Additionally, this section presents measurement equipment, used for surveying the sea-
sonal variability of the baseline. Moreover, this chapter describes the method of performing
TSB measurements and defines the method of elaborating measurement data, registered
during the survey. In chapter 3, baseline course is visualized for the three waterbodies of
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the Republic of Poland and a discussion is held over the issue of how Poland’s TSB has
changed over the course of years. The article is summed up with final (general) conclusions,
summarizing the paper’s content.

2. Materials and Methods
2.1. Measurement Locations

TSB measurements are performed in coastal sea areas, characterized by small depths [6,7].
In the case of Poland, the baseline is located at a depth of several dozen cm to 1–2 m below
the current water level. Its position depends on the water level fluctuations and seafloor
shape of the waterbody. In connection with the above, it was decided to select three
representative waterbodies of the Republic of Poland for TSB measurements to be taken
(Table 1).

Table 1. Representative waterbodies on which TBS measurements were carried out [44].

Name of Waterbody Features Photograph

Waterbody No. 1: Open sea public beach
in Gdynia

A waterbody with a typically running, straight
coastline. The waterbody length is about 450 m.
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Waterbody No. 2: Vistula Śmiała River
mouth near the National Sailing Centre

(NSC) in Gdańsk

A waterbody of great dynamics of
hydromorphological features (with no

hydrotechnical structures). The waterbody
length is about 250 m.
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Depending on the location of baseline measurement, a sounding profile arrangement
had to be designed. They were indicated pursuant to the recommendations set forth
in the standard issued by the International Hydrographic Organization (IHO), entitled
“IHO Standards for Hydrographic Surveys” [45]. It was decided to design main profiles
perpendicular to the direction of coastline, with an assumption that distances between the
profiles will amount to 5–10 m. Moreover, to verify the conducted survey, control profiles
were determined every 10–20 m, which were perpendicular to main profiles [44]. Figure 2
presents the sounding profile arrangement for three waterbodies of the Republic of Poland.

For scheduling hydrographic surveys, Trimble Business Center (TBC) software and
ortophotos shared on Google Earth Pro platform were used. It must be taken into account
that the sounding profile arrangement during individual measurement campaigns might
have changed slightly due to shifts in coastline, both for inland, as well as towards the sea.
This situation was particularly evidenced in waterbody No. 2, where the greatest changes
in coastline were observed.
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2.2. Measurement Equipment

For the execution of TSB measurements, a research tool (developed at the beginning
of the 2010s) was used, i.e., a hydrographic USV. This is a radio remote control vessel,
providing for hardware integration with a GNSS phase receiver and vertical echosounder
(minimum equipment). It is designed for conducting hydrographic surveys of docks,
lakes, rivers and small water reservoirs. For the survey, two unmanned surface vehicles
were used: an OceanAlpha USV SL20 (OceanAlpha Group Ltd., Hong Kong, China) in
an autonomous version and a Seafloor Systems HyDrone (Seafloor Systems Inc., Shingle
Springs, CA, USA) in an autonomous version (after modernization of the remote-control
mode) (Figure 3). They feature many benefits, in comparison to manned vessels, including
high maneuverability and small sizes, making it possible to navigate over tight routes.
Additionally, a major benefit of unmanned vessel is a pump-jet drive, which renders it
possible for them to navigate in waterbodies overgrown with aquatic vegetation, e.g., reeds.
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For registration of measurement data, miniature Single Beam Echo Sounders (SBES)
were used [SBES series Echologger (Teledyne RD Instruments Inc., Poway, CA, USA)
and SonarMite BTX (Ohmex Ltd., Lymington, UK)], allowing to measure depths of up
to 30 cm with an accuracy of centimeters and GNSS geodetic receivers [Leica Viva GS 15
(Leica Geosystems, St. Gallen, Switzerland) and Trimble R10 (Trimble Inc., Sunnyvale, CA,
USA)], making it possible to determine position coordinates with an accuracy of a couple
of centimeters. To navigate unmanned surface vehicles in autonomous mode, autopilots
(PixHawk Cube) were used, supported by GNSS receivers and magnetic compasses. Based
on the previously conducted surveys, it was established that both control systems provide
for the possibility of maintaining USV on sounding profiles with an accuracy of: 0.92–2.11 m
(p = 0.68) and 2.01–2.72 m (p = 0.95) [46,47].

2.3. TSB Measurements

Since an important factor influencing the obtained results are hydrometeorological
conditions, the measurements were taken in windless weather conditions and with calm
water (0 in the Douglas sea scale, no wave nor sea currents). When a favorable weather
window was forecast, the survey was conducted. Before starting any measurement cam-
paign, the measurement equipment had to be mounted (miniature SBES and GNSS geodetic
receiver) on the USV. After the mounting of sensors on the unmanned surface vehicle,
they must be calibrated in order to function properly. Hence, for the miniature SBES, the
following three operations were carried out [48]:

1. Calibration (taring) of the vertical echo sounder;
2. Measurement of the vertical distribution of the speed of sound in water;
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3. Measurement of the draft of the echo sounder transducer.

However, for the GNSS geodetic receiver, the following two operations were performed:

1. Inclinometer calibration;
2. Magnetometer calibration.

When all the above-listed tasks had been completed, a significant number of measure-
ments were then taken. For the survey, five measurement campaigns were carried out, with
each waterbody being measured three times. Detailed information about the conducted
measurements is provided in Table 2.

Table 2. Information on the conducted measurement campaigns of the TSB.

Measurement
Campaign Number

Measurement
Date

Measurement
Location

Number of
Recorded Points Measurement Equipment

1 19 July 2018 Waterbody No. 1 7204

Energies 2021, 14, x FOR PEER REVIEW 6 of 16 
 

 

water (0 in the Douglas sea scale, no wave nor sea currents). When a favorable weather 
window was forecast, the survey was conducted. Before starting any measurement cam-
paign, the measurement equipment had to be mounted (miniature SBES and GNSS geo-
detic receiver) on the USV. After the mounting of sensors on the unmanned surface vehi-
cle, they must be calibrated in order to function properly. Hence, for the miniature SBES, 
the following three operations were carried out [48]: 
1. Calibration (taring) of the vertical echo sounder; 
2. Measurement of the vertical distribution of the speed of sound in water; 
3. Measurement of the draft of the echo sounder transducer. 

However, for the GNSS geodetic receiver, the following two operations were per-
formed: 
1. Inclinometer calibration; 
2. Magnetometer calibration. 

When all the above-listed tasks had been completed, a significant number of meas-
urements were then taken. For the survey, five measurement campaigns were carried out, 
with each waterbody being measured three times. Detailed information about the con-
ducted measurements is provided in Table 2. 

Table 2. Information on the conducted measurement campaigns of the TSB. 

Measurement 
Campaign Num-

ber 

Measurement 
Date 

Measurement 
Location 

Number of 
Recorded 

Points 
Measurement Equipment 

1 19.07.2018 Waterbody No. 1 7204 

 
USV: Seafloor Systems HyDrone (after modernization) 

Autopilot: PixHawk Cube 
Echosounder: SonarMite BTX 
GNSS receiver: Trimble R10 

2 18.09.2018 
Waterbody No. 2 4655 

Waterbody No. 3 3446 

3 25.07.2019 
Waterbody No. 2 4048 

Waterbody No. 3 3029 

4 19.09.2019 Waterbody No. 1 8163 

5 08.10.2020 

Waterbody No. 1 7204 

 
USV: OceanAlpha USV SL20 

Autopilot: Not specified 
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Waterbody No. 2 3680 

Waterbody No. 3 3741 

  

USV: Seafloor Systems HyDrone (after modernization)
Autopilot: PixHawk Cube

Echosounder: SonarMite BTX
GNSS receiver: Trimble R10

2 18 September
2018

Waterbody No. 2 4655

Waterbody No. 3 3446

3 25 July 2019
Waterbody No. 2 4048

Waterbody No. 3 3029

4 19 September
2019 Waterbody No. 1 8163

5 8 October 2020

Waterbody No. 1 7204
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2.4. Measurement Data Elaboration

After having taken the measurements, it was decided to transform the registered
data into a single, three-dimensional coordinate system. Among others, Gauss–Krüger
projection, Universal Transverse Mercator (UTM) coordinate system, Kronstadt 86 height
system and PL-geoid2011 quasigeoid model was used for the survey. All transformations
of coordinates of points were conducted with TBC software.

The depths were then registered with an echosounder for the chart’s datum (508 cm)
were to be checked. To this end, the values of water levels, as shared by the Polish Institute
of Meteorology and Water Management-National Research Institute (IMWM-NRI), were
used. To indicate the current water level, information from the gauging station, located the
closest to the site of hydrographic surveys, was utilized. Thus, in the case of waterbody
No. 1, it was the tide gauge located in Gdynia; and for waterbodies No. 2 and 3, it was the
gauging station in Gdańsk-Port Północny [44].

Following measurement data preparation, elaboration of numerical seabed models in
the surveyed waterbodies started. For their preparation, TBC was used, making it possible
to generate the surface of an area in the form of Triangulated Irregular Network (TIN). A
TIN model is generated through the triangulation of depth points, fulfilling the Delaunay
condition that a circle circumscribed around a triangle contains only the vertices of the
triangle. In other words: inside such a circle there are no other points that do not belong
to the triangle about which the circle was circumscribed. This characteristic makes the
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Delaunay triangulation exceptional, and it is implemented in various applications. For
the purpose of this paper, it will be used for three-dimensional modelling of the seabed in
the coastal zone [49–52]. The outcome of the triangulated irregular network model will
be tetrahedrons connected with each other. An exemplary model in the form of TIN is
presented in Figure 4. Other popular seabed modelling methods in hydrography are GRID,
B-splines and NURBS [53–55].

A TIN model was used in the calculations for several reasons. Firstly, the authors did
not care about excessive smoothing of the waterbody in the unmeasured areas. Secondly,
the proximity of the measured waterbodies and the land resulted in large variability in
bathymetry. In this case, the use of methods characterized by a tendency to smooth data
would have the result that these areas could be mapped in a manner deviating from reality.
Another reason for the use of TIN is that the USV had a tendency to constantly change
the speed. In this case, methods such as kriging would give more weight to observations
made at lower velocities (density of measurements), and areas measured at higher speeds
would have lower weights. Such a phenomenon would cause excessive smoothing of areas
measured at high velocities.
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Figure 4. Seabed of the waterbody No. 1 in the form of a TIN.

The next step was to define the TSB depth in the surveyed waterbodies. To accomplish
this, pursuant to the definition in Article 5 of the United Nations Convention on the Law of
the Sea (UNCLOS), the lowest water level ever registered along the coast of a given coastal
state should have been identified [6]. Therefore, for the purpose of this paper, information
on the lowest water levels ever registered at Polish gauging stations in 1945–2015 were
obtained from the Maritime Department of the IMWM-NRI in Gdynia. In the case of
waterbody No. 1, the lowest water level was 415 cm (registered on 04 November 1979 in
Gdynia), and for waterbodies No. 2 and 3, it was 414 cm (registered on 04 November 1979
in Gdańsk-Port Północny). Zero ordinates for both gauging stations were referenced with
sea level in Kronstadt (PL-KRON86-NH), thus with the very same height system, as in the
case of depths registered by echosounders. Thanks to this data, it was possible to define
depths corresponding to baselines at the surveyed waterbodies (dTSB) [44]:

dTSB = 5.08 m − HLWL, (1)

where

HNSW—the lowest water level in the PL-KRON86-NH system (m).

Over the final stage, the calculated isobaths (93 cm for waterbody No. 1 and 94 cm for
waterbodies No. 2 and 3) were plotted onto seabed models in the form of TIN. Constant
depth values were presented in the form of smooth curves, using a spline function.

2.5. TSB Variability Analysis

The next part was to evaluate the TSB variability in 2018–2020. The distance between
baselines, as measured in particular years, was adopted as the measure of the change eval-
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uation. For their determination, the Digital Shoreline Analysis System (DSAS) extension of
ArcGiS software was used, allowing for the calculation of change statistics of boundaries
between the land and water, based on time series [56,57]. The calculations started with the
determination of the reference line in the form of [58]:

XRL = b · YRL + a, (2)

where

XRL, YRL—coordinates of the reference line in the PL-UTM system (m);
b—slope of the reference line (–);
a—x-intercept of the reference line (m).

The distance between the reference line and the TSB was then calculated. To do this, it
was necessary to draw straight lines perpendicular to the reference line in the form of:

XPLi = −1
b
· YPLi + ai, (3)

where

XPLi , YPLi —coordinates of the i-th perpendicular line in the PL-UTM system (m);
i—numbering of perpendicular lines, increasing southwards (–);
ai—mutual distance between successive perpendicular lines (m). For the purposes of this
study, it was assumed to be 1 m.

The distances between the reference line and the baseline (di) were calculated based
on the intersection points of these lines with the i-th perpendicular line:

di =

√(
XRLi − XTSBi

)2
+
(
YRLi − YTSBi

)2, (4)

where

XRLi , YRLi —reference line intersection points with the i-th perpendicular line in the PL-
UTM system (m);
XTSBi , YTSBi —TSB intersection points with the i-th perpendicular line in the PL-UTM
system (m).

After calculating the distance between the reference line and the TSB from 2018–2020,
the seasonal variability of the baseline in three representative waterbodies was determined.
For this purpose, distances were calculated between two selected TSBs (∆di) using the
following formula:

∆di = d2019−2020i − d2018−2019i , (5)

where

d2019−2020i —distance between the TSB from 2019–2020 and the reference line calculated
along the i-th perpendicular line (m),
d2018−2019i —distance between the TSB from 2018–2019 and the reference line calculated
along the i-th perpendicular line (m).

Finally, the most frequently used statistical measure can be calculated, i.e., standard
deviation of the distance between two selected TSBs from 2018–2020 (σ∆d):

∆d =

n
∑

i=1
∆di

n
, (6)

σ∆d =

√√√√√ n
∑

i=1

(
∆di − ∆d

)2

n
, (7)

where
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∆d—arithmetic mean of the distances between two selected TSBs from 2018–2020 (m),
n—the number of perpendicular lines (–).

3. Results and Discussion

After measurement data elaboration, it was decided to visualize the TSB course,
measured with USV in 2018–2020 in three representative waterbodies described in Table 1.
The sea areas were an area adjacent to the public beach in Gdynia (Figure 5), an area located
close to the Vistula Śmiała River mouth (Figure 6) and an area located at the approach to
Górki Zachodnie from the Gdańsk Bay (Figure 7).
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Energies 2021, 14, x FOR PEER REVIEW 10 of 16 
 

 

 
Figure 6. The course of the TSB of the waterbody located close to the Vistula Śmiała River mouth 
measured with the hydrographic method in 2018–2020. 

 
Figure 7. The course of the TSB of the waterbody located at the approach to Górki Zachodnie from 
the Gdańsk Bay measured with the hydrographic method in 2018–2020. 

To determine the TSB variability at the three representative waterbodies in 2018–
2020, it was decided to use the mathematical model presented in Section 2.5. With it, charts 
(Figures 8–10) were plotted, picturing how the baseline changed its location against the 
coastline over the course of years. 

Figure 6. The course of the TSB of the waterbody located close to the Vistula Śmiała River mouth
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Figure 7. The course of the TSB of the waterbody located at the approach to Górki Zachodnie from
the Gdańsk Bay measured with the hydrographic method in 2018–2020.

To determine the TSB variability at the three representative waterbodies in 2018–2020,
it was decided to use the mathematical model presented in Section 2.5. With it, charts
(Figures 8–10) were plotted, picturing how the baseline changed its location against the
coastline over the course of years.
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Figure 8. Distances between TSBs of the waterbody adjacent to the public beach in Gdynia measured with the hydrographic
method in 2018–2020.

Figure 8 shows that the seasonal variability of the TSB course is quite considerable. The
greatest differences were observed in the middle section of a waterbody, where the baseline
moved up to 10 m for inland (coastline chainage: 0.145–0.16 and 0.19–0.24) in 2019–2020,
and even moved towards the sea by up to 10–30 m (coastline chainage: 0.11–0.24) in
2018–2019. Moreover, it should be noted that the TSB changes irregularly (from −10 m
to 10 m) along the coastline chainage. In order to determine, in a statistical context, how
the baseline at the waterbody adjacent to the municipal beach in Gdynia had changed,
it was decided to calculate the standard deviation in the distance between TSBs (σ∆d).
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This amounted to 8.37 m (in 2018–2019), 5.73 m (in 2019–2020) and 5.11 m (in 2018–2020).
Undeniably, the main reason for the seasonal variability of the baseline course is the
periodically performed land reclamation works in the area. As the authors of this paper
managed to determine, the waterbody adjacent to the public beach in Gdynia is filled with
material (sand) sourced during dredging of approach fairways to ports by the Maritime
Authorities. The outcome of such actions are numerous “shallows” and “depressions”
occurring up to an isobath of 1 m. An additional factor influencing the TSB variability
is the waterbody seabed shape, which is characterized by the slowly rising depths when
moving away from the coastline, and thus, at some points, the changes in the location of
the baseline are considerable.

Energies 2021, 14, x FOR PEER REVIEW 12 of 16 
 

 

 
Figure 9. Distances between TSBs of the waterbody located close to the Vistula Śmiała River mouth measured with the 
hydrographic method in 2018–2020. 

Based on Figure 9, it may be noted that the seasonal variability of the TSB course is 
slight, as the baselines are almost overlapping one another. The greatest differences were 
observed in the middle section of a waterbody, where the TSB moved up to approx. 5–7 
m for inland (coastline chainage: 0.14–0.165) in 2018–2019, and even moved towards the 
sea by up to approx. 5–6 m (coastline chainage: 0.145–0.165) in 2019–2020. Excluding the 
middle section of the waterbody (coastline chainage: 0.14–0.17), it should be noted that 
the baseline changes irregularly (from −4 m to 4 m) along the coastline chainage. As in the 
case of the waterbody adjacent to the public beach in Gdynia, to determine, in a statistical 
context, how the TSB at the waterbody located near the Vistula Śmiała River mouth had 
changed, it was decided to calculate the standard deviation in the distance between base-
lines (σΔd). This amounted to 3.00 m (in 2018–2019), 1.86 m (in 2019–2020) and 2.80 m (in 
2018–2020). The obtained statistical measures indicated that the location of the TSB is very 
stable. To a large degree, this stems from the fact that in some points (coastline chainage: 
0.18–0.25), the waterbody features steep shores (within a couple of meters from the coast-
line, the depths amount up to 5 m), thus the changes on the baseline course are slight. 

Figure 9. Distances between TSBs of the waterbody located close to the Vistula Śmiała River mouth measured with the
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measured with the hydrographic method in 2018–2020.

Based on Figure 9, it may be noted that the seasonal variability of the TSB course
is slight, as the baselines are almost overlapping one another. The greatest differences
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were observed in the middle section of a waterbody, where the TSB moved up to approx.
5–7 m for inland (coastline chainage: 0.14–0.165) in 2018–2019, and even moved towards
the sea by up to approx. 5–6 m (coastline chainage: 0.145–0.165) in 2019–2020. Excluding
the middle section of the waterbody (coastline chainage: 0.14–0.17), it should be noted
that the baseline changes irregularly (from −4 m to 4 m) along the coastline chainage. As
in the case of the waterbody adjacent to the public beach in Gdynia, to determine, in a
statistical context, how the TSB at the waterbody located near the Vistula Śmiała River
mouth had changed, it was decided to calculate the standard deviation in the distance
between baselines (σ∆d). This amounted to 3.00 m (in 2018–2019), 1.86 m (in 2019–2020)
and 2.80 m (in 2018–2020). The obtained statistical measures indicated that the location
of the TSB is very stable. To a large degree, this stems from the fact that in some points
(coastline chainage: 0.18–0.25), the waterbody features steep shores (within a couple of
meters from the coastline, the depths amount up to 5 m), thus the changes on the baseline
course are slight.

Figure 10 indicates that the seasonal variability of the TSB course is slight, with a few
exceptions. The greatest differences were observed in the middle section of a waterbody,
where the baseline moved up to a dozen or so meters towards the sea (coastline chainage:
0.13–0.145) in 2018–2019, and towards the sea by 10–15 m (coastline chainage: 0.22–0.235)
in 2019–2020. Not counting the indicated locations, the TSB changed its location by a few
meters, both inland, as well as towards the sea. As in the case of the previously presented
waterbodies, to determine, in a statistical context, how the baseline at the waterbody located
at the approach to Górki Zachodnie from the Gdańsk Bay had changed, it was decided
to calculate the standard deviation in the distance between TSBs (σ∆d). This amounted
to 6.54 m (in 2018–2019), 5.54 m (in 2019–2020) and 7.57 m (in 2018–2020). Based on
the obtained statistical measures, it must be stated that the location of the baseline is
quite stable.

4. Conclusions

This paper aimed to define the TSB variability in 2018–2020. The survey was conducted
in three representative waterbodies of the Republic of Poland: open sea, river mouth and
exit from a large port, differing between each other in seabed shape.

Owing to the development of research tools, such as USVs, GNSS geodetic receivers
and miniature echosounders, it is possible to take very accurate (1–5 cm, p = 0.95), detailed
(the measurement coverage of the terrain being measured was much larger in comparison
to classical geodetic methods) and rapid bathymetric measurements. This is of particular
importance in ultra-shallow waters, since Poland’s TSB is located at depths of tens of
centimeters, up to 1–2 m below the current surface water level.

TSB measurements, carried out for three representative waterbodies of the Republic of
Poland in 2018–2020, allowed to determine the seasonal variability of its course. Based on
the obtained results, it was established that the smallest variability in the baseline course
(σ∆o2018−2019

= 3.00 m and σ∆o2019−2020
= 1.86 m) was occurred in the waterbody near the

Vistula Śmiała River mouth, which features steep shores (within a couple of meters from
the coastline, there is a sudden increase of depth up to 5 m). For this reason, the changes in
the location of the TSB are slight. On the other hand, the greatest variability in the baseline
(σ∆o2018−2019

= 8.37 m and σ∆o2019−2020
= 5.73 m) was observed in the waterbody adjacent

to the public beach in Gdynia. Factors conditioning considerable changes in TSB location
included periodically performed land reclamation works at the area and the fact that the
depth of the waterbody rises slowly when moving away from the coastline.
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