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An electronic navigational chart is a major source of information for the navigator. The com-
ponent that contributes most significantly to the safety of navigation on water is the informa-
tion on the depth of an area. For the purposes of this article, the authors use data obtained by
the interferometric sonar GeoSwath Plus. The data were collected in the area of the Port of
Szczecin. The samples constitute large sets of data. Data reduction is a procedure to reduce
the size of a data set to make it easier and more effective to analyse. The main objective of
the authors is the compilation of a new reduction algorithm for bathymetric data. The cluster-
ing of data is the first part of the search algorithm. The next step consists of generalisation of
bathymetric data. This article presents a comparison and analysis of results of clustering
bathymetric data using the following selected methods: K-means clustering algorithm, trad-
itional hierarchical clustering algorithms and self-organising map (using artificial neural
networks).
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1. INTRODUCTION. The purpose of this paper is to present the concept of clus-
tering of large sets of bathymetric data in a reduction process, which is especially useful
for delivery of reduced data sets for the production of precise bathymetric and port
Electronic Navigational Charts (ENCs) and also for large-scale bathymetric maps
resulting from hydrographic surveys. For precise plan and chart production it is very
important to use the most accurate data possible. Aspects of ENC production planning
and navigational data evaluation have been examined by many researchers, e.g. Hyla
et al. (2015), Janowski et al. (2014), Liu et al. (2014), Kazimierski and Stateczny
(2015), Przyborski (2002), Tsou (2010), Ye et al. (2014). ENCs are produced according
to the strict S-57 standard enforced by the International Hydrographic Organization
(IHO) and are visualised by means of the Electronic Chart Display and Information
System (ECDIS).

THE JOURNAL OF NAVIGATION (2016), 69, 1143–1153. © The Royal Institute of Navigation 2016
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Bathymetric data are usually gathered byMulti-Beam Echosounder (MBES), which
acquires a large number of data points. Bathymetric data processing is performed in
several stages. Suitable gathering, preparation and presentation of data is a long and
laborious process. The gathering and processing of bathymetric data have been dis-
cussed by several authors, e.g. Lubczonek (2004), Lubczonek and Stateczny (2003),
Maleika (2015a; 2015b), Stateczny (2000; 2002a).
One of the problems connected to bathymetric measurements is registering a large

amount of data. The main objective of the authors’ research is the compilation of a
new reduction algorithm for bathymetric data to be used for the production of elec-
tronic navigational charts. Data reduction is a procedure by which the size of a data
set is reduced, in order to make the analysis easier and more effective. For navigation
safety it is very important to retain points of minimum depth. There are several
methods to execute data reduction. One of them is to transform a large quantity of
variables into a single, common value. Another way to reduce data is to use advanced
statistical methods that make it possible to decrease the size of a data pack by breaking
it down into basic factors, dimensions or concentrations, pinpointing the basic rela-
tions between the analysed instances and variables. Another method is to deduct a
given number of instances from a large array, while maintaining its overall suitability
for the analysed population. Frequently, hydrographic systems generate a grid by using
means or weighted means (Stateczny and Wlodarczyk-Sielicka, 2014).
The main purpose of the authors is the creation of a new reduction algorithm for

bathymetric data. Spatial clustering consists of grouping together similar features.
All clustering algorithms aim to minimise the measure of dispersion within the clusters.
The clustering of data is the first part of the search algorithm, as shown in Figure 1.
The next step is the generalisation of bathymetric data.
The authors aim to categorise a set of points into groups and then represent each

group by a single point (the minimum depth) depending on the compilation scale. It
should be emphasised that, in their reduction method, measuring points of
minimum depth will be presented regardless of the scale used, and they will remain
in their actual position. The position of such a measuring point and the depth at
this point will not be an interpolated value.
Another approach to navigational data processing is multisensory data fusion.

Aspects of navigational data fusion have been presented by many researchers, e.g.
Kazimierski and Stateczny (2015), Stateczny and Bodus-Olkowska (2014; 2015),
Stateczny and Kazimierski (2013), Wawrzyniak and Hyla (2014).
In this article the authors present the results of comparison and analysis of clustering

bathymetric data using the following selected methods: K-means clustering algorithm,
traditional hierarchical clustering algorithms and Self-Organising Map (SOM) using
artificial neural networks. This comparison allows the choice of clustering methods,
which will be used in the next stage of research into finding a reduction method for
bathymetric data.

2. THE THEORETICAL BASIS OF TESTMETHODS. It is well known that the
diversity of the final division of data depends on the method used to cluster the
samples. This article presents a comparison and analysis of results of clustering bathy-
metric data using the following selected methods: non-hierarchical K-means method,
classical hierarchical clustering algorithms and self-organising feature map using
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artificial neural networks. These methods are often used for grouping data. The
authors focus on the use of these methods for grouping high-density bathymetric data.

2.1. K-means Clustering Algorithm. The K-means clustering algorithm is prob-
ably the best-known non-hierarchical method.
In general, there are n data points xi, i = 1…n that have to be partitioned into k clus-

ters. The purpose is to appropriate a cluster to each data point. K-means is a method
that tends to find the positions ui, i = 1…k of the clusters that minimise the distance
from the data points to the cluster. K-means clustering solves:

arg min
c

Xk
i¼1

X
x∈ci

dðx; uiÞ ¼ arg min
c

Xk
i¼1

X
x∈ci

jjx� uijj22j ð1Þ

where ci is the collection of samples that belong to cluster i. K-means clustering uses the
square of the Euclidean distance:

dðx; uiÞ ¼ jjx� uijj22 ð2Þ
The procedure starts by determining the number of clusters, k. In the next step the al-
gorithm designates a point as the cluster centre for each of the clusters: ui = a certain
value, i = 1…k. In the third step all the samples are compared with each centre and
assigned to the nearest cluster centre:

ci ¼ j : dðxj; uiÞ � dðxj ; ulÞ; l ≠ i; j ¼ 1; . . . ; n
� � ð3Þ

In the fourth step the centres of each cluster are recalculated by using the average
vector of the samples assigned to the cluster:

ui ¼ 1
jcij

X
j∈ci

xj;∀i ð4Þ

Figure 1. Proposed algorithm for bathymetric data reduction.
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where |c| is number of elements in c. The procedure is repeated until the centres no
longer move around significantly (Li, 2007).

2.2. Hierarchical Clustering Algorithms. The agglomerative hierarchical algo-
rithms fundamentally work in the following way. In the first step each of the
samples to be clustered is examined as a unique cluster. The next step is to find the
similarity or dissimilarity between every pair of samples in the data set. In this step
the samples are compared using a selected measure of distance: Euclidean distance,
standardised Euclidean distance, Minkowski distance, Mahalanobis distance,
Chebychev distance or other. Next, the two clusters with smaller distance are linked.
Only two clusters can be linked in each step (Mignoti and Lima, 2006). A linkage
method is used to compare the clusters in each step and to decide which should be
grouped. There are several procedures for computing distance between clusters:

. average (uses the average distance between all pairs of objects in any two clusters):

dðr; sÞ ¼ 1
nrns

Xnr
i¼1

Xns
j¼1

distðxri; xsjÞ ð5Þ

. centroid (uses the Euclidean distance between the centroids of the two clusters):

dðr; sÞ ¼ jj�xr � �xsjj2 ð6Þ
where

�xðrÞ ¼ 1
nr

Xnr
i¼1

xri ð7Þ

. complete (uses the largest distance between objects in the two clusters):

dðr; sÞ ¼ max distðxri; xsjÞ
� �

; i ∈ ð1; . . . ; nrÞ; j ∈ ð1; . . . ; nsÞ ð8Þ

. median (uses the Euclidean distance between weighted centroids of the two clus-
ters):

dðr; sÞ ¼ jjexr � exsjj2 ð9Þ

. single (uses the smallest distance between objects in the two clusters):

dðr; sÞ ¼ min distðxri; xsjÞ
� �

; i ∈ ð1; . . . ; nrÞ; j ∈ ð1; . . . ; nsÞ ð10Þ

. wards (uses the incremental sum of squares):

dðr; sÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2nrns

ðnr þ nsÞ

s
jj�xr � �xsjj2 ð11Þ
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where: r,s are clusters, n is the number of samples in a cluster, x is a sample in the
cluster, �x is the centroid of the cluster, and ~x is the weighted centroid of the cluster.
As samples are paired into binary clusters, the newly formed clusters are grouped

into larger clusters until a hierarchical tree is formed. The procedure is repeated
until the desired number of clusters is achieved.

2.3. Self-Organising Map (SOM). A new idea to solve computational problems
associated with processing abundant amounts of bathymetric data is to use Artificial
Neural Networks (ANN). Various aspects of ANN solutions for navigation purposes
have been described by several authors, e.g. Balicki et al. (1998), Stateczny (2002b;
2004). A very interesting idea is to cluster data by using a self-organising Kohonen
network (Ciampi et al., 2000; Kohonen, 1982).
In the process of network learning there is no association between input signals and

the output of the network. In the case of Kohonen networks, competition between
neurons provides the basis for updating values assigned to weights. Put mathematically,
it can be assumed that k is the number of clusters, x= (x1, x2,…, xp)′ is the input vector
in the training case, where p is the number of variables, and wl = (wl1, wl2,…, wlp)′ is the
weight vector associated with the node l, where wlj indicates the weight assigned to
input xj to the node l. Several objects of the training data set are presented to the
network in random order. During the competition between neurons, the neuron
closest to the input sources, in the meaning of the chosen distance method calculation,
is a winner for the input data set. The degree of adjustment depends on the distance of
the neuron from the input data. The node l is moved some proportion of the distance
between it and the training case. The proportion is determined by the learning rate. For
several objects i in the training data set, the distance di between the weight vector and
the input signal is calculated. Then the competition begins, and the node l with the
smallest distance di is the winner. The weights of the winner are then updated using
the learning rule. The weights of the non-winner are not modified. In general, the
Euclidean distance is used to compare several neurons with several samples though
any other metric could be chosen. The Euclidean distance between an object with
observed vector x and the weight vector wl is:

dðx;wlÞ ¼ ⌈Xp
j¼1

ðxj � wljÞ2⌉
1
2

ð12Þ

The weight vector for the lth node in the sth step of the algorithm can be represented as
ws
l , Xi is the input vector for the ith training case and αs is the learning rate for the sth

step of training. After several steps, a training case Xi is selected and the index q of the
winning node is determined:

q ¼ arg min
l

jjws
l � Xijj ð13Þ

The Kohonen update rule for the winner node is:

wsþ1
q ¼ ws

qð1� αsÞ þ Xiα
s ¼ ws

q þ αsðXi � ws
qÞ ð14Þ

It should be noted that for all non-winning nodes l, wsþ1
l ¼ ws

l (Mignoti and Lima,
2006). SOMs learn to cluster data based on similarity and topology, with a preference
(but no guarantee) of assigning the same number of instances to each class. In Matlab
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software, SOMs take these arguments: layer topology function, row vector of dimen-
sion sizes, number of training steps for initial covering of the input space, initial neigh-
bourhood size and neuron distance function.

3. EXPERIMENTS. All test methods were implemented using Matlab software,
developed by MathWorks. To collect bathymetric data the floating laboratory
Hydrograf XXI, with GeoSwath Plus 250 kHz sonar and supplementary equipment
such as GPS/RTK, satellite compass and motion sensor installed, was used.

3.1. Test Area. For collecting bathymetric data the authors used the interfero-
metric sonar system GeoSwath Plus 250 kHz. The measurement profiles were realised
maintaining 100% coverage of the measured body of water. Test data were collected
within Szczecin Harbour, near the Babina Canal, on 23 May 2010. During the
survey a large amount of data was collected. Nowadays typical data sets for hydro-
graphic surveys might contain in the order of several hundred million to a billion or
more soundings, spread over a hectare of surface area. Very high-density data
present the main operational limitation when using a standard computer. In order
to solve this problem, the authors divided the original data point sets into smaller
subsets, which could be trained separately. In the next stages of the research, the
authors will use the selected method over several differing test areas.
The test data set included 3,760 samples of three elements (x,y,z), as shown in

Figure 2. Each point has three attributes: latitude, longitude, and a predetermined
depth at a given point. The minimum depth is 3·60 m, the maximum is 5·23 m and
the mean depth is 4·42 m.
The data positions are given by the Universal Transverse Mercator (UTM) coord-

inate system, an international locational reference system.
3.2. Test Procedure. The main criterion for evaluating each method for reduction

of bathymetric maps is the legibility of the maps. Therefore, at this stage of the research
several populations were generated with number of clusters k = 9, 25, 49, 100. For the
purpose of clustering, the K-means clustering algorithm, traditional hierarchical clus-
tering algorithms and SOM were applied.
In the K-means algorithm, the Euclidean distance was used to measure similarities

among clusters. In hierarchical clustering algorithms, four methods of grouping
samples were selected: single, average, centroid and complete. In each method the
Euclidean distance was used to calculate the distance between every pair of objects
in a data set. In a data set made up of n objects, there are n(n− 1)/2 pairs. After selec-
tion of a hierarchical method, the number of clusters was specified. In the last method,
during the training the network applies the rule Winner Take Most (WTM) according
to which weight vector associated with each neuron moves to become the centre of a
cluster of input vectors. In addition, neurons that are adjacent to each other in the top-
ology are also moved close to each other in the input space. The authors decided to
select the hexagonal network topology, where each of the hexagons represents a
neuron. The numbers of rows and columns was set to 3 × 3, 5 × 5, 7 × 7 and 10 × 10,
which provided 9, 25, 49 and 100 neurons, respectively. The initial neighbourhood
size was set at three and the number of training steps for initial coverage of the
input space was set at 100. Distances between neurons are calculated from their posi-
tions by means of a link distance function. The link distance from one neuron is the
number of links or steps that must be taken to get to the neuron under consideration.
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The number of epochs was set at 200 based on recent research (Stateczny and
Wlodarczyk-Sielicka, 2014). The total yield of 24 different sets of clusters was ana-
lysed. During the research the authors adopted the precision of two decimal places.

3.3. Results. In this study the authors adopted the following evaluation criteria:
possibility of automation, time taken for calculations, and regular distribution of data
in each cluster. Each of these criteria was considered in relation to the use of clustering
for bathymetric map production, which could include ENCs. The results for nine clus-
ters are presented in this article. The results for different numbers of clusters are com-
parable. The authors focused on depth values, which are of significant importance for
the safety of navigation. Table 1 presents the results for nine clusters.
Table 1 includes minimum, maximum and mean values of depth, number of samples

in each cluster and Standard Error of the Mean (SEM) for each cluster. SEM is the
standard deviation of the sampling distribution from the mean. SEM is calculated
as the sample estimate of the population standard deviation divided by the square
root of the sample size. In order to facilitate analysis, SEM was multiplied by 1000.
The authors assumed that a small value of SEM is closely related to a regular distri-
bution of bathymetric data in each cluster. It should be mentioned that this parameter
is taken into account only for evaluation criteria relating to regular distribution of data
points in each group.
Figure 3 shows a spatial representation of the results for nine clusters obtained by

the test algorithms.
It should be remembered that the application of different test methods results in dif-

ferent nomenclature for clusters. However, this is not important in reduction of bathy-
metric data. Spatial representation of results facilitates visual assessment.
As previously mentioned, the legibility of the bathymetric map will be one criterion

for evaluating each reduction method; therefore, in order to facilitate the analysis,
comparable numbers of samples in clusters are made for each method. It can be

Figure 2. Test data from an area of 100 m2 (Wlodarczyk-Sielicka and Stateczny, 2015).
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Table 1. Results for nine clusters.

Clustering
method

Cluster Minimum
depth (m)

Maximum
depth (m)

Mean
depth (m)

Number of
samples in cluster

SEM
(×1000)

K-means 1 3·93 4·94 4·47 419 8·31
Single 3·77 5·04 4·40 230 14·51
Average 4·23 5·20 4·73 248 12·07
Centroid 4·23 5·20 4·73 226 12·64
Complete 3·67 4·61 4·13 270 10·35
SOM 3·70 4·60 4·17 434 8·16
K-means 2 3·96 4·94 4·39 489 7·69
Single 3·70 4·85 4·20 208 15·25
Average 4·03 5·23 4·60 320 12·30
Centroid 4·08 5·23 4·71 312 12·46
Complete 3·70 4·85 4·27 517 8·80
SOM 3·67 4·67 4·17 478 8·23
K-means 3 4·09 5·22 4·64 320 11·74
Single 3·77 5·07 4·38 300 15·59
Average 3·98 5·02 4·43 521 7·89
Centroid 3·93 5·20 4·54 403 9·96
Complete 3·93 5·20 4·58 270 12·17
SOM 3·60 4·74 4·21 421 9·26
K-means 4 4·17 5·23 4·72 294 12·83
Single 3·67 5·20 4·36 250 18·97
Average 3·93 5·20 4·57 498 8·96
Centroid 3·98 5·02 4·46 625 7·60
Complete 4·09 5·22 4·63 360 12·12
SOM 3·93 4·94 4·48 524 7·43
K-means 5 3·67 4·67 4·16 443 8·55
Single 3·73 5·22 4·42 569 10·06
Average 3·99 4·99 4·43 535 8·21
Centroid 3·60 4·74 4·22 251 12·62
Complete 3·85 4·75 4·26 425 8·25
SOM 3·94 5·04 4·47 430 9·16
K-means 6 3·70 4·60 4·17 426 7·75
Single 3·66 5·05 4·36 288 17·68
Average 4·09 5·17 4·55 54 34·02
Centroid 3·66 4·62 4·16 476 8·25
Complete 3·99 5·04 4·50 459 8·87
SOM 3·96 4·94 4·39 443 8·08
K-means 7 4·00 5·02 4·45 503 8·03
Single 3·70 5·18 4·42 279 17·36
Average 4·12 5·22 4·78 277 15·02
Centroid 3·99 5·02 4·45 709 7·14
Complete 3·98 5·02 4·44 657 7·41
SOM 4·09 5·22 4·64 304 12·62
K-means 8 3·60 4·74 4·21 417 9·30
Single 3·60 5·23 4·42 489 13·57
Average 3·67 4·61 4·18 383 9·20
Centroid 3·67 4·60 4·16 515 7·49
Complete 3·60 4·65 4·14 354 10·10
SOM 4·17 5·23 4·72 280 13·15
K-means 9 4·11 5·20 4·69 449 9·44
Single 3·73 5·20 4·50 1147 7·38
Average 3·60 4·74 4·19 624 7·61
Centroid 4·09 5·22 4·63 243 15·40
Complete 4·08 5·23 4·74 448 9·92
SOM 4·11 5·20 4·69 446 9·47

1150 MARTA WLODARCZYK–SIELICKA AND ANDRZEJ STATECZNY VOL. 69

http:/www.cambridge.org/core/terms. http://dx.doi.org/10.1017/S0373463316000035
Downloaded from http:/www.cambridge.org/core. IP address: 176.221.120.3, on 07 Sep 2016 at 19:41:16, subject to the Cambridge Core terms of use, available at

http:/www.cambridge.org/core/terms
http://dx.doi.org/10.1017/S0373463316000035
http:/www.cambridge.org/core


assumed that the average number of points in each cluster (in the case of nine clusters)
is approximately 418 samples. This comparison is shown in Figure 4.
The horizontal axis represents the number of clusters and the vertical axis shows the

number of bathymetric data points. This comparison facilitates regular distribution
analysis of data in each cluster.

Figure 3. Results for nine clusters obtained by algorithms: K-means (a), single (b), average (c),
centroid (d), complete (e), SOM (f).

Figure 4. Distribution of the number of samples in each cluster.
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The next criterion used in this research is the regular distribution of data in each
cluster. It can be seen that the best result was obtained with the K-means and SOM
methods. When using the single algorithm method, a very patchy distribution was
obtained: the minimum number of points in the cluster was 208 and the maximum
number of points in the cluster was 1,147. Figure 4 shows that other hierarchical algo-
rithms may be considered acceptable.
With regard to the possibility of automation, the best method is the K-means algo-

rithm. This is due to the fact that implementation and change of individual settings are
not difficult. Other test algorithms are more difficult to implement as changing the set-
tings of individual functions is more time-consuming.
As regards the time required for calculations, traditional hierarchical clustering

algorithms are the worst. Hierarchical algorithms are the slowest because they
involve calculation of the distance between every pair of objects in a data set. With
such large volumes of data this takes a very long time.

4. CONCLUSIONS. Knowledge of the depth of an area of water is crucial for its
safe navigation. Depth is therefore one of the most important components of an ENC.
Generally, hydrographic systems generate a grid with use of means or weighted means.
The main aim of the authors was to create a new data reduction algorithm applicable
to the production of ENCs. The authors categorise a set of points into a cluster and
then represent each group by a single point (the minimum depth) depending on the
compilation scale of the ENC. Analysis of the results shows that the worst results
are given by the single algorithm method. Average, centroid and complete algorithms
may be considered acceptable. The best results for clustering bathymetric data are
obtained using the K-means and SOM methods.

REFERENCES

Balicki, J., Kitowski, Z. and Stateczny, A. (1998). Extended Hopfield Model of Neural Networks for
Combinatorial Multiobjective Optimization Problems. In Proceedings of the 2nd IEEE World Congress
on Computational Intelligence, Anchorage, USA, pp. 1646–1651.

Ciampi, A., Lechevallier, Y. and Clustering, L. (2000). Multi-level Data Sets: an Approach Based on
Kohonen Self Organizing Maps. Lecture Notes in Computer Science, 1910, 353–358.

Hyla, T., Wawrzyniak, N. and Kazimierski, W. (2015). Model of Collaborative Data Exchange for Inland
Mobile Navigation. In Proceedings of Soft Computing in Computer and Information Science Conference,
Miedzyzdroje, Poland. Advances in Intelligent Systems and Computing, 342, 435–444.

Janowski, A., Nowak, A., Przyborski, M. and Szulwic, J. (2014). Mobile Indicators in GIS and GPS
Positioning Accuracy in Cities. In Proceedings of the Joint Rough Set Symposium, Granada and
Madrid, Spain, Kryszkiewicz et al. (Eds), Lecture Notes in Artificial Intelligence, 8537, pp. 309–318.

Kazimierski, W. and Stateczny, A. (2015). Radar and Automatic Identification System Track Fusion in an
Electronic Chart Display and Information System. The Journal of Navigation 68(6), 1141–1154.

Kohonen, T. (1982). Self-Organized Formation of Topologically Correct Feature Maps. Biological
Cybernetics, 43(1), 59–69.

Li, Z. (2007). Algorithmic Foundation of Multi-scale Spatial Representation. CRC Press.
Liu, T., Zhao, D. and Pan, M. (2014). Generating 3DDepiction for a Future ECDIS Based onDigital Earth.
The Journal of Navigation, 67(6), 1049–1068.

Lubczonek, J. (2004). Hybrid Neural Model of the Sea Bottom Surface, In Artificial Intelligence and Soft
Computing – ICAISC 2004, Zakopane, Poland, L. Rutkowski, J. Siekmann, R. Tadeusiewicz et al.
(Eds), Lecture Notes in Artificial Intelligence, 3070, 1154–1160.

1152 MARTA WLODARCZYK–SIELICKA AND ANDRZEJ STATECZNY VOL. 69

http:/www.cambridge.org/core/terms. http://dx.doi.org/10.1017/S0373463316000035
Downloaded from http:/www.cambridge.org/core. IP address: 176.221.120.3, on 07 Sep 2016 at 19:41:16, subject to the Cambridge Core terms of use, available at

http:/www.cambridge.org/core/terms
http://dx.doi.org/10.1017/S0373463316000035
http:/www.cambridge.org/core


Lubczonek, J. and Stateczny, A. (2003). Concept of Neural Model of the Sea Bottom Surface. In Proceedings
of the Sixth International Conference on Neural Networks and Soft Computing, Zakopane, Poland,
L. Rutkowski and J. Kacprzyk (Eds), Book Series: Advances in Soft Computing, 19, pp. 861–866.

Maleika, W. (2015a). Moving Average Optimization in Digital Terrain Model Generation Based on Test
Multibeam Echosounder Data. Geo-Marine Letters, 35, 61–68.

Maleika, W. (2015b). The Influence of the Grid Resolution on the Accuracy of the Digital Terrain Model
Used in Seabed Modelling. Marine Geophysical Research, 36, 35–44.

Mignoti, S. and Lima, J. (2006). Comparing SOM Neural Network with Fuzzy c-means, K-Means
and Traditional Hierarchical Clustering Algorithms. European Journal of Operational Research, 174,
1742–1759.

Przyborski, M. (2002). Possible determinism and the real world data. Physica A – Statistical Mechanics and
its Applications, 309(3–4), 297–303.

Stateczny, A. (2000). The Neural Method of Sea Bottom Shape Modelling for the Spatial Maritime
Information System. Maritime Engineering and Ports II. Barcelona, Spain, C. A. Brebbia, and
J. Olivella (Eds), Book Series: Water Studies Series, 9, pp. 251–259.

Stateczny, A. (2002a).Methods of Comparative Plotting of the Ship’s Position, Maritime Engineering & Ports
III.Rhodes, Greece, C. A. Brebbia and G. Sciutto (Eds), Book Series:Water Studies Series, 12, pp. 61–68.

Stateczny, A. (2002b). Neural Manoeuvre Detection of the Tracked Target in ARPA Systems, In Control
Applications in Marine Systems 2001 (CAMS 2001), Glasgow, UK, R. Katebi (Ed.), IFAC
Proceedings Series, pp. 209–214.

Stateczny, A. (2004). Artificial Neural Networks for Comparative Navigation, In Artificial Intelligence and
Soft Computing – ICAISC 2004, Zakopane, Poland, L. Rutkowski, J. Siekmann R. Tadeusiewicz et al.
(Eds), Lecture Notes in Artificial Intelligence, 3070, 1187–1192.

Stateczny, A. and Bodus-Olkowska, I. (2014). Hierarchical Hydrographic Data Fusion for Precise Port
Electronic Navigational Chart Production. In Telematics in the Transport Environment, Proceedings of
the 14th International Conference on Transport Systems Telematics, TST 2014, Katowice-Ustroń,
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